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ON MULTIPLE DELAMINATION BUCKLING AND
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Abstract—Composite plates containing a multiple number of delaminations are analyzed with
respect to combined buckling and crack growth. The von Karman plate theory is employed to
determine axisymmetric bifurcation and post-buckling behavior. in particular with respect to contact
between delaminated layers. For various combinations of geometry and material parameters, energy
release rates at incipient crack growth are determined and stability characteristics predicted. The
results show that contact between buckled layers may significantly influence post-buckling features
and promote delamination growth.

I. INTRODUCTION

Composite panels composed of laminates are currently used as structural members in many
applications, mainly to cnsure properties of some optimal design. In order to securc a
satisfactory service life. however, the structural integrity of laminates has to be duly con-
sidered. A notorious issuc in this context has been concerned with the presence of inter-
laminar cracks or delaminations. Thus, the origin of such damage may lead to severe
degradation of stiffness and strength of load-carrying members such as in aircraft struc-
tures. Some of these issues have recently been discussed in a survey by Stordkers (1989),
which for one thing emphasized the need for analyzing problems concerning multiple
delaminations. The particular type of damage involved seems to be especially frequent at
low velocity impact.

When analyzing laminates under external foading and containing multiple delaminations,
circumstances might become very complex, as illustrated in Fig. la, Thus, the features of
buckling and crack propagation are likely to be much involved, especially when contact
between laminates occurs and possibly also because of fiber failure and kinking of cracks.
However, for less complicated crack patterns, as illustrated in Fig. Ib, Chai er al. (1981)
have produced results which are simplified though still of practical importance.
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Fig. 1. Delamination damage after impact.
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Fig. 2. Composite plate with n delaminations.

In general, problems of the type outlined have so far received little attention in the
literature. Bolotin ¢f al. (1981) analyzed the case of column buckling with several though
non-interacting equidistant delaminations of equal length. The results were restricted to the
eigenvalue problem and proved that the lowest buckling loads correspond to antisymmetric
modes. Chai et al. (1981) analyzed the problem when one delaminated ply was thick enough
to resist significant bending and considered a simplified treatment of a multiply-delaminated
beam-column structure by retaining a single delamination growth. Wang ¢t al. (1985a,b)
also studied buckling of multiple delaminations although the analysis was restricted to
symmetry and to the cigenvalue problem only, without consideration of contact.

In Fig. 2. a damaged arca with multiple delaminations due to impact is depicted. according
to expertmental results shown in principle by Chai and Babcock (1985). The present
contribution aims at solving the corresponding problem due to buckling and crack growth.
Geometry and loading are assumed axisymmetric and non-frictional contact between
delaminated layers is taken into account. The analysis is restricted to delaminations of
consecutive magnitudes, as depicted in Fig. 2; such features frequently prevail due to
impact. As regards material behavior individual delaminated layers are assumed to be linear
elastic and isotropic. This, however, does not exclude anisotropic material behavior of
individual laminae. It is furthermore presumed that the damaged part of the panel is thin
enough so that the “thin-film” approximation (Chai er al., 1981), is applicable in the
analysis, .. bending deformation is neglected in undamaged laminated segments. It has
been shown earlier by Larsson (1990) that in the case of a single delamination, very accurate
results for the thin-Alm approximation were found for delaminated thicknesses that were
less than 25% of the total panel thickness essentially, though for clamped conditions as in
this presentation. It is believed then that similar circumstances will prevail as regards the
present geometric details.

2. BASIC EQUATIONS FOR DELAMINATED LAYERS

The class of problems concerned involves multiple layers of circular shape. It is
advisable then to first establish the potential encrgy for a circular plate of radius a and
thickness ¢. Thus, for an axisymmetric and Hookean situation

U= “ Er du l(dw): : du (du) )
= laosile 2\a) | 2lets
[ (d*w\  2vdw d w [ dw
E[(&?‘)* rar (: a‘)]}"zq“]”"d’ M

in the von Karman approximation. In (1), g(r) is the transverse distributed loading and u
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and w are the radial and transverse displacements, presently being prescribed at the bound-
ary.r=a.

The governing equations are then generated by varying the potential in (1) and as the
present situation is multiple, each vanation for a delaminated layer as shown in Fig. 2 has
to be considered.

At an individual layer of index j, the kinematic constraints to be satisfied at r = g, read

U= —ag

w; =0 )
dw;

dr

as, according to the thin-film approximation. straining is homogeneous outside delaminated
layers.

If contact occurs between two layers, jand j+ | say. then in conformity with distributed
transverse displacements and loading ¢, between layers jand j+ I,

(w/+ |(I') - W; ('))‘lu (r) =0 (3)
with the restrictions
W (r)=w, (20, ¢, =0 4

Ifcontact is also present between the supplementary layers jand j - 1, then the resulting
pressure on the jth layer may be subsequently expressed at a point r as

q, (r) = ‘I// l(")“‘l,;(") (5)
in the introduced notation.

Having accounted for the local behaviour and interaction of laminates, it now proves
useful to introduce dimensionless local variables according to

Fy = rly,

- 2

0, = wa/t 6)
Wy = w L

q. = ,af‘(E‘[")

9, = q;a; (&)

By introducing (6) into (1). the variational equation to be solved for each individual
layer reads
1
J; L@+ w2 2) (867, + W,/ 8w/ ) +v, (@@ + w2 2)dd, + 4, (86, + W, 0w, )/F, + (&,7,) (3 /F,)
F[OF v, W [F)OR" + (v, [7,+ W, [71)ow, 12— (1 ~ vf)ti, ow )7 di, =0, (7)

where a prime now and in the following represents differentiation with respect to 7.

3. SOLUTION PROCEDURE FOR BUCKLING

In order to solve the buckling and post-buckling problem as given implicitly by eqn
(3). an iterative procedure based on the so-called conjugate gradient method is employed
while in each iteration step a finite element method is used to determine the displacement
fields w,(r).
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The solution procedure is commenced by making an initial search for the contact
pressure between overlapping adjacent layers. [ncrements for the pressure are then sub-
sequently added until eqn (3) is satistied everywhere in the structure.

By denoting the displacement and contact pressure of node i, layer j by w (i) and g,,(¢).
respectively. the pressure increments at the iteration & are given by

¢ (D) =g (1) = df (i) (8)
where
di (i) = =gy () + By () 9)
and
gr) = (i (D =wf ()¢ (/1
B =g (g ) —gr ' (N/(gr ()97 (i))} (o

The resuiting pressure on layer j at node ¢ is then given by
¢ D) = g8 ) — ¢ ). as according to eqn (5).
In the iteration procedure, a coaverging solution was considered sufficiently accurate when
min ((w, () —w, ()))/max (w,, ) > —& (n

where £ in no case dealt with was larger than 10

In order to initiate the procedure, contact between the substrate and the lowest layer
was not considered, The solutions for the post-buckling displacements showed, however,
that in no case analyzed was this kind of contact present. Furthermore, although no rigorous
investigation was carried out as to whether potential energy minima were actually achieved,
perturbations of contact pressures were performed with the intention to reasonably secure
the reliability of the solution method. This issue was important in particular at crack tips
since the left-hand side of (11) then becomes ambiguous by definition.

This iteration method just outlined, known as the conjugate gradient method, may be
characterized as a Newton method with the Jacobian tuken to be the identity matrix and a
correction term ff*df '(i) added in order to improve the rate of convergence. A more
detailed description of the method has been given by Strang (1986).

1t remains then to constder the displacement fields s (i) at buckling. As the thin-Alm
approximation is adopted, the defaminated layers will buckle initially as for a clamped
circular plate. The critical edge displacement at the outer boundary then becomes in a
standard manner

w(a) = —1.2235¢7/((1 +v,)a,) (12)

for cach individual layer. The continued post-buckling displacements are then determined
by solving eqn (7) via the finite element method.

In all major details, the same hinite clement procedure was adopted as the once used by
Storikers and Andersson (1988). Consequently the basic elecment trial functions, N, used
in element i, F(/) < 7 < F(i + 1), were explicitly

No=(E=1)(E+2/4, N,
Ny = (E=D)CE+ D8, N,

i

—(E+D)(E-2)H,
(S+D(-2) } (13

(E+ 1) (E= A3,

where
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E= QF=Fi)—Fi+ D))/ (Fi+ 1) =F()
and
h = Fi+ )= F(i).

For the numerical procedure it is suitable to write eqn (7) in incremental form.
Replacing i,, w; by i, + Au;, w;+ AW, where Ag; and AW, are increments sought for, yields to

first order
K Kn)(Aa,-) (R.)
= 4
(KT'Z K:z,‘ Aﬁ) sz (l )

where the explicit expressions for (K,); and (R,); are given in Appendix A.

Expressed in this manner, the satisfaction of equilibrium corresponds in a weak sense
to the vanishing of the right-hand side of eqn (14). The solution then proceeds in a standard
manner through iteration of (14), where the increments Ad and Aw are added to the
displacement fields & and W until the relative magnitudes of corrections in displacements
and energies are less than predetermined values.

As regards the main features in the element procedure proposed by Storikers and
Andersson (1988) there exists, however, one additional issue as regards multiple laminates.
Due to the presence of contact between individual layers, the F~dependence of the resulting
pressure g, had to be duly considered and implemented into the numerical procedure. This
was accomplished by allowing §, to vary linearly over each element. Explicitly, the pressure
g, applicd to element 4, 7,(i) € 7 < F(i+ 1), reads

4,(7)) = 14, (F, (D, (i + 1) = 4, (7, (i + D)7, (1)
+(G G+ 1)) =G, (FONFHr(F i+ D) =7 () (15)

where the node pressures §;(7;()) and §,(7, (i + 1)) were determined by the iterative procedure
just outlined.

4. THE ENERGY RELEASE RATE AT DELAMINATION GROWTH

In order to predict delamination growth, the most common criterion adopted is associ-
ated with the energy release rate as in the spirit of Griffith’s classical work. When crack
growth is sclf-similar, it is then a straightforward matter to determine the rate of change
of potential energy of the system. In a general situation, however, the resistance to crack
propagation may be mode-dependent and the inhomogeneity of crack parameters might
become quite intricate.

Presently the issue of mode partitioning, eventually as in modes I and II for axisym-
metry, will not be considered but instead local values of the energy release rate will be
discussed in the spirit of Storikers and Andersson (1988), starting from the von Karman
plate theory and first principles. Thus, as found by these writers, the energy released at
crack advance da(x,) with a crack contour I, having the local normal n,, may be expressed
as

-oU = ‘[IIP,, in,ngdadl, (16)

where P,; may be interpreted as a plate analogue of Eshelby’s energy momentum tensor
and | || denotes its jump determined from the individual plate members intersecting at
the crack front.

Explicitly. P, reads (Storakers and Andersson, 1988)
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P,ﬁ = W’(S,ﬂ—N,./u.,,.g-i"1\[,.,‘u3.,5—Q,u3_ﬂ. (17)

where W denotes the plate strain energy density and. leaving out details, the remaining
variables are conjugate quantities in a customary sense.

Once the combined post-buckling and contact problem outlined earlier has been solved.
no fundamental difficulties remain by combining (16) and (17) to compute energy release
rates locally at crack fronts. In the present case, the problem is technically advantageous
as axisymmetry prevails. Furthermore, superposition of a homogeneous strain field ¢, will
simplify matters further as it does not affect the energy release rate but produces a stress
free state in regions away from delaminated parts. This issue has been discussed in some
detail by Yin (1985) and Suo and Hutchinson (1988).

5. RESULTS AND DISCUSSION

The problem of multiple delaminations subjected to buckling involves many aspects
since the parameters comprised are not only due to outer loading and material constants
but also crack length and thickness ratio between delaminated layers including the particular
issuc of contact pressure. The aim of the present investigation is, therefore, to obtain
a quantitative description of the multiple delamination problem providing insight into
engineering applications and especially how the presence of contact affects energy releasc
rates and subsequent crack growth behavior. The illustrations analyzed are thercfore chosen
in such a way that contact occurs as otherwise the multiple delamination problem may be
reduced to analyzing a number of single delaminations separately as dealt with by carlier
wrilers.

The outer loading is introduced into the individual laminates through the parameters

4, = 1201 =v})la, (1), (18)

which corresponds to non-dimensional in-plane displacements at the crack fronts. Since 4,
in (18) is equivalent to the parameter @ introduced by Yin (1985) in the analysis of single
delamination problems, this facilitates a direct comparison between the present results and
carlicr non-contact problems.

When presenting explicit results it proves useful to introduce a dimensionless measure
for the encrgy release rate at the crack fronts according to

G/ = Gj/(El’lgg) (19)

in obvious notation.

With a multiple number of delaminations present in a plate structure, contact can enter
the problem in a number of ways. Thus, Fig. 3a describes a straightforwird contact problem
to be analyzed in the following. For simplicity, initially only two delaminations are assumed
to be present but the layers can, however, be made of different materials and thicknesses.
In the first event considered. Figs 3a and 3b, the buckling load for the upper layer. layer 2,
is smaller than that for the lower one, layer 1. As a consequence, initially no contact arises,
Fig. 3a, and the interesting feature corresponds to the later event when also the lower layer
starts to buckle, Fig. 3b. However, this situation does not necessarily mean that contact
initially enters the problem but if transverse displacements of the lower layer are high
cnough, etther directly or after crack growth, a contact problem will result as shown in Fig.
3b. It is clear though that if contact does not occur the problem may be dealt with as single
delamination problems although both layers have deflected transversally.

In Figs 3c and 3d. the problem is posed somewhat differently since in this case the
lower layer buckles first. Depending on the magnitude of the bending stiffness of the upper
layer, essentially two features may occur; either the lower layer forces the upper layer to
deflect substantially. Fig. 3c, or layer 2 is so stiff that there is virtually no deflection until
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Fig. 3. Buckled delamination geometries to be analyzed.

the outer louding reaches the buckling load also for the upper layer. [n any case, contact
does enter the problem directly if the lower layer buckles first. At combined buckling, all
the cases analyzed showed that the contact area was somewhat decreasing under external
load, Fig. 3d, although contact was still maintained.

To conclude then, as regards the fundamental difference between the cases just outlined,
the issue concerns the behavior of the layers, i.e. whether buckling occurs for both layers
or not as in Figs 3a and 3c, respectively. As soon as both layers have buckled, the two
problems as in Figs 3b and 3d are principally the same when contact is present.

The main attention is now focused on some relevant and explicit results. It seems
natural then to first consider a case for which the outer loading is increased monotonically
so that buckling of one layer occurs initially. Subsequently, buckling of both layers and
cnsuing transverse displacements in the post-buckling range enter with possibly the whole
process of contact being present throughout.

In Fig. 4, the transverse displucement at the center of the layers is depicted as a
function of the outer loading represented by the parameter 4, defined in (18). In this case
two equally long cracks are considered, and the two layers are made of the same isotropic
material, although the upper layer is slightly thicker than the lower one, viz. t, = 1.1t,. This
implies that the lower plate buckles first and forces the upper one to deflect before buckling,
corresponding to a situation as described in Figs 3c and 3d. Nominally the upper plate
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Fig. 4. Transverse displacements, w(0)/¢,, as a function of non-dimensional edge displucement, 4,
for a plate with two delaminations, £, = £, v, = v, =03, ¢, = ay, t, = 111,

buckles when 4, approximately takes on the value 3.2 and it may be observed in Fig. 4 that
the ensuing load-deflection curve constitutes rather smooth behavior.

In Fig. 5 encrgy release rates are shown and also a comparison between the values for
the upper layer from the present analysis and that by Yin (1985) for u single delamination
is made. As may be scen, the energy release rate is higher for the upper layer and the
difference compared to the case of a single delamination is around 10% or more. When it
comes to realistic values for the critical energy release rate, as in common cases of fiber-
reinforced plastics, these may be expected to be of order one or higher. Thus, the cracks
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Fig. 5. Energy release rates, G = G/E 1,¢3, as a function of non-dimensional edge displacement, iy,
for a plate with two delaminations, £, = E,. v, = v, = 03, @, = a,. 1, = L.1{,: (-~~~} lower crack
1, (——} upper crack 2 and (— ) crack 2 with contact suppressed.
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analyzed in connection with Fig. 5 will be expected to propagate in an unstable manner
when 4. takes on values of around twice the buckling load. Transverse deflections as shown
in Fig. 4 will then be critical at approximately three times the laminate thickness. Contact
will be continuous at higher deflections although it will be lost at the centre of the plates
for values of 4, being approximately 6 or larger.

It is then suitable to concentrate on the behavior of the energy release rate for different
lengths of laminates and slightly different materials. In Fig. 6, again two delaminations are
present although in this case the layers are equally thick and made of isotropic materials
though with different Poisson ratios. The values for G for the two cracks are then depicted
as functions of the crack length ratio for two different values of the outer loading.

If the applied load is just slightly above the buckling load. 4, = 1.24%, the values of
the energy release rates are fairly low and it is not likely that any one of the cracks will start
to grow. As is evident, contact will not be in question unless the crack length ratio does not
exceed approximately 0.95. The influence of contact is then. however, quite obvious and in
this particular case contact might affect G-values by up to 20%.

If the outer loading is higher, 4, = 34¥ as in Fig. 6, no new fundamental issues are
involved although the values of the energy release rates are now more realistic when crack
growth is a likely event. It should be noted, however, that at this higher value of the outer
loading contact will not occur until a crack length ratio of above 0.98.

It is well known from the results by Yin (1985) that if a single delamination starts to
grow in the present situation the behavior is expected to be catastrophic. This might.
however, not be the case for multiple delaminations if contact is involved. [f the lower crack
in Fig. 6, corresponding to the dotted line for G-values, grows when contact is present the
increase in contact pressure between the layers will actually cause the encrgy release rate to
decrease for this delamination and crack arrest might occur. If on the other hand the upper
crack is critical and starts to grow when contact is present, the contact pressure will decrease
and also in this situation, for the upper delamination, the energy release rate will actually
decrease so that crack arrest might take place.

The analysis also shows that with a crack length ratio «,/a, approaching unity, a
discontinuity appears for G,. This phcnomenon is believed to be anomalous and due to the
usc of plate variables. As a consequence a full 3D-analysis, or at least thick plate theory,
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Fig. 6. Energy release rates, G = G/E 1,23, as a function of crack length ratio, a,/a,, for a plate with
two delaminations, E, = E,, v, =035, v; =02, {, =1, i, = 1.24Y and 4, = 3.5 (---) lower
crack |, (——) upper crack 2 and (@) G ata, =a..
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seems necessary for a more accurate description of the multiple delamination problem in
this situation. In the case of £, = [.24%, as shown in Fig. 6, the discontinuity gave a
conservative result from a crack growth point of view while for 4, = 3A¥ the result proved
to be substantially non-conservative, viz. G, = 1.75. Thus, the whole feature must be
considered as a drawback when relying on the use of plate variables at crack lengths being
nearly equal.

Figure 7 illustrates energy release rates when a third delamination is introduced.
depicted as a function of the crack length ratio a,;/a though supplemented with an additional
laminate with the crack length ratio a.'a, fixed at 0.98. The three layers involved are
assumed equally thick but have three different values of Poisson’s ratio. The outer loading
is taken as 4, = 24Y.

With the results from Fig. 6 in mind. the behavior of the energy release rates shown
in Fig. 7 is similar when contact between the layers enters the problem. For the two upper
delaminations G increases while the lowest layer is forced down by the contact pressure
and the encrgy release rate for this crack accordingly decreases. Again a conservative
discontinuity for G, is present at a, = a..

When the difference in thickness between layers is fairly large. as expected the effect
of contact proves to be more pronounced than for the cases shown earlier in Figs 6 and 7.
In Fig. 8. encrgy release rates are shown again as functions of the crack length ratio @,/a-.
In this case, two delaminations are considered with a thickness of the upper layer being 1.S
times the lower one. The layers are assumed to have the same Poisson’s ratio and Young's
modulus tor the upper layer being either equal to or twice the value of the lower one. The
outer loading is fixed to 4, = 249 and again the situation is as described in Figs 3b and 3d.

The effect of contact on encrgy release rates is perhaps surprisingly high as G, is
increased with more than 30% when contact is present. The difterence in encrgy release
rates for the lower layer at the two values of Young's modulus proved to be very smaldl. In
the present case, the discontinuity of G, at cracks of equal length gave a significantly higher
and non-conservative result for the energy release rate in contrast to some of the carlier
findings tor layers of equal thickness.

It is now appropriate to analyze in more detail the role of transverse displacements
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Fig. 7. Encrgy release rates, G = G E,¢,63, as a function of crack length ratio. ¢,/a,. for a plate with

three delaminations, £, = £, = £, v, =035 v, =0275. v, =02, a, = 1.0 Ta,. a1, =1, =1,

Av= 24— —)lowest crack [L (- ) intermediate crack 2. (——) upper crack 3 and (@) G, at
a, =a,.
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Fig. 8. Energy release rates, G = G/E 1,84, as a function of crack length ratio, a,/a,. for a plate with
two delaminations, £, = £, and E, = 2E, v, = v, =031, = 1.5, 4, = 249 (- --) lower crack
1. (-—=) upper crack 2and (@) G, ata, = a,.

and contact arcas. Results are shown in Figs 9-11 for the case of two layers having the
same material properties and the same geometry as in Fig. 8. The crack length ratio u\/a,
was fixed at unity while the outer loading was the parameter being varied. The problem
posed was then analogous to that depicted in Figs 3¢ and 3d. [t did prove possible, however,
to find cquilibrium solutions for non-zero transverse displacements only when the outer
loading was larger than the buckling load for the upper layer. This is most likely due to
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Fig. 9. Energy relcase rates, G = G/E .25, as a function of normalized edge displacement, 4,/AT,
for a plate with two delaminations. £, = E,, v, = v, = 0.3, a, = a, t; = 1.5¢,; (--~) lower crack
1. (——) upper crack 2 and (—-—) crack 2 with contact suppressed.
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Fig. 10. Transverse displacements, w(0)/1,, as a function of normalized edge displacement, 4,/47,

for a plate with two delaminations, £, = E, v, = v, = 0.3, a, = ay 1, = 1.5t (- -) lower crack
| and (—-) upper crack 2.

numcrical inadequacies caused by a very high stiffness of the upper layer until the outer
loading reaches the buckling load for this member.

In Fig. 9. energy release rates are depicted as functions of the normalized outer loading
parameter 4,/A5. The conclusions drawn are similar to those related to Fig. S with a smaller
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Fig. 11. Contact area (shaded) for layers in a plate with two delaminations for different values of
normalized edge displacement A,/49, E, = E.. v, =v; =03, ay = a, (; = 1.5¢,.
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thickness ratio and it is evident in this case that to a substantial degree. energy release rates
are underestimated when contact is not taken into account.

In Fig. 10, transverse displacements in the center of the layers are plotted as a function
of the outer loading. As may be seen, local contact is present at 7 = 0 up to about twice the
buckling value and subsequently the contact region becomes annular. Such contact behavior
did occur also for the upper layer being somewhat thinner, as in Fig. 4. The difference in
transverse displacements at the center was. however, fairly small for the two layers even at
high values of the outer load.

The development of the contact area is depicted in Fig. 11 for increasing values of the
outer loading. As has been indicated earlier, it is interesting to note that the contact area is
moving away from the center of the layers and also becomes smaller as the outer loading is
increased.

In order to also investigate the effect of a large number of cracks, some illustrative
solutions are shown in Fig. 12. In this case equally long delaminations, at most five, with
a small difference in thickness are considered, this is to ensure that contact will occur
between all layers present. All plates are made of the same material though with increasing
thickness and the outer loading corresponding to twice the buckling load for the uppermost
layer, i.e. 45 = 245,

Chai et al. (1981) and Chai and Babcock (1985) have conjectured that mostly it is
sufficient in similar multiple delamination problems to take into account only a single
delamination. With contact considered, the results depicted in Fig. 12 show, however, that
with a small number of cracks (presently four or less) the most critical delamination from
a crack growth point of view is the uppermost one while for an additional delamination
the lowest crack becomes the most critical one. Remembering that energy release rates are
very material and geometry dependent, the results shown in Fig. 12 indicate the need to
analyze the behavior of all cracks present in the damaged structure with contact included
in order to clarify the cruck growth behavior in multiple delamination problems.

Finally the influence of the tolerance of contact on the convergence of the solution has
been analyzed. The parameter g, as defined in (11), corresponds to the relative magnitude
of the interpenctration between two layers in contact. Figure 13 shows the results for the
case of a plate with two delaminations of equal length and material, but with the upper
layer 50% thicker thun the lower one. The outer loading was taken to be twice the buckling
load for the upper layer. For this particular gecometry convergence was reached at ¢ being
approximately equal to 5x 10 * and in other studies, indicating that tolerances around
10 * were acceptable in almost every case dealt with.

25

20

n
Fig. 12, Energy release rates. G = G/E,1,¢i. as a function of number of delaminations, n, in a
plate, E,=E;=E,=E,=E;, vi=v;=vy=sv,=v,=03,a,=a,=a,=a,=a, 1, =11,
o= 02000, = 130, 1= L1, Ag = 247.
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Fig. 13. Energy release rate, G, = Gy E,¢,£4. as a function of the tolerance, & defined in (1), fora
plate with two delaminations, £, = E. v, =v. =00 ¢, =a.t. =150, 2, =2
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6. CONCLUSIONS

An cffort was made to investigate the interaction between buckled delaminated layers
and the resulting features as regaeds possible crack growth. As the outcome naturally rests
on several simplifying assumptions, though still found complex, a balance was sought for to
bring out the salient features duce to crack growth in the presence of multiple delaminations
subjected to contact. Under these conditions, results were generally found to be non-
conservative when compared to single delaminations experiencing no contact between
fayers, but still being subject to catastrophic crack growth.

In the first situation explicitly dealt with, involving two interacting delaminations with
the thicker layer being forced to deflect by a buckled thinner one, a higher energy releasc
rate will result for the thicker member. As a consequence, crack growth might be possible
in situations where a single member is still below the buckling load. Also, at nominal
buckling of both layers the encrgy release rate will be increased for the upper crack. as
compared to a single delamination when contact is caused by @ thinner member. When
laminates are of closely similar stiffness and differ in length by only a few per cent, the
energy release rate may be changed by up to 20% due to contact. When one member is
50% thicker, the influence of contact on the encrgy release rate is of order one and the
effect is definitely of importance. The situation was similar for three interacting laminates,

Although cases of primarily two delaminations have been dealt with, it was evident
that no simple conclusions may be drawn about growth behavior without a detailed analysis,
This finding was truc also in the casc of an increasing number of laminates, up to five, and
having contact between all fayers. No continuous behavior of delamination growth was
predicted but instead all cases had to be analyzed in detail.

All results were based on plate theory which caused an anomalous discontinuity in the
energy release rate at approaching crack fengths, It would scem of interest to study this
issue further by using the three-dimensional theory.
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APPENDIX
The elements appearing in the matrix equation (14) are explicitly
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